{rfName}
Tr

Indexado en

Licencia y uso

Icono OpenAccess

Citaciones

86

Altmetrics

Análisis de autorías institucional

Sanchez-Alonso, SalvadorAutor o Coautor

Compartir

26 de septiembre de 2023
Publicaciones
>
Review

Traceability for Trustworthy AI: A Review of Models and Tools

Publicado en:Big Data And Cognitive Computing. 5 (2): 20- - 2021-06-01 5(2), DOI: 10.3390/bdcc5020020

Autores: Mora-Cantallops, Marcal; Sanchez-Alonso, Salvador; Garcia-Barriocanal, Elena; Sicilia, Miguel-Angel

Afiliaciones

Univ Alcala, Dept Comp Sci, Madrid 28801, Spain - Autor o Coautor

Resumen

Traceability is considered a key requirement for trustworthy artificial intelligence (AI), related to the need to maintain a complete account of the provenance of data, processes, and artifacts involved in the production of an AI model. Traceability in AI shares part of its scope with general purpose recommendations for provenance as W3C PROV, and it is also supported to different extents by specific tools used by practitioners as part of their efforts in making data analytic processes reproducible or repeatable. Here, we review relevant tools, practices, and data models for traceability in their connection to building AI models and systems. We also propose some minimal requirements to consider a model traceable according to the assessment list of the High-Level Expert Group on AI. Our review shows how, although a good number of reproducibility tools are available, a common approach is currently lacking, together with the need for shared semantics. Besides, we have detected that some tools have either not achieved full maturity, or are already falling into obsolescence or in a state of near abandonment by its developers, which might compromise the reproducibility of the research trusted to them.

Palabras clave

Artificial intelligenceProvenanceRepeatabilityReplicabilityReproducibilityTraceabilityTransparencyTrustworthy ai

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Big Data And Cognitive Computing debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia Scopus (SJR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2021, se encontraba en la posición , consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Management Information Systems.

Desde una perspectiva relativa, y atendiendo al indicador del impacto normalizado calculado a partir de las Citas Mundiales proporcionadas por WoS (ESI, Clarivate), arroja un valor para la normalización de citas relativas a la tasa de citación esperada de: 1.55. Esto indica que, de manera comparada con trabajos en la misma disciplina y en el mismo año de publicación, lo ubica como trabajo citado por encima de la media. (fuente consultada: ESI 14 Nov 2024)

Esta información viene reforzada por otros indicadores del mismo tipo, que aunque dinámicos en el tiempo y dependientes del conjunto de citaciones medias mundiales en el momento de su cálculo, coinciden en posicionar en algún momento al trabajo, entre el 50% más citados dentro de su temática:

  • Field Citation Ratio (FCR) de la fuente Dimensions: 16.7 (fuente consultada: Dimensions Jul 2025)

De manera concreta y atendiendo a las diferentes agencias de indexación, el trabajo ha acumulado, hasta la fecha 2025-07-12, el siguiente número de citas:

  • WoS: 32

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-07-12:

  • El uso, desde el ámbito académico evidenciado por el indicador de la agencia Altmetric referido como agregaciones realizadas por el gestor bibliográfico personal Mendeley, nos da un total de: 100.
  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 108 (PlumX).

Con una intencionalidad más de divulgación y orientada a audiencias más generales podemos observar otras puntuaciones más globales como:

  • El Score total de Altmetric: 7.
  • El número de menciones en la red social X (antes Twitter): 2 (Altmetric).

Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

  • El trabajo se ha enviado a una revista cuya política editorial permite la publicación en abierto Open Access.